16+20x^2=752

Simple and best practice solution for 16+20x^2=752 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16+20x^2=752 equation:



16+20x^2=752
We move all terms to the left:
16+20x^2-(752)=0
We add all the numbers together, and all the variables
20x^2-736=0
a = 20; b = 0; c = -736;
Δ = b2-4ac
Δ = 02-4·20·(-736)
Δ = 58880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{58880}=\sqrt{256*230}=\sqrt{256}*\sqrt{230}=16\sqrt{230}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{230}}{2*20}=\frac{0-16\sqrt{230}}{40} =-\frac{16\sqrt{230}}{40} =-\frac{2\sqrt{230}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{230}}{2*20}=\frac{0+16\sqrt{230}}{40} =\frac{16\sqrt{230}}{40} =\frac{2\sqrt{230}}{5} $

See similar equations:

| 6x-2/2=x9 | | 15u=72+6u | | 48+(2x+5)=3x+23 | | 2m=11.28 | | -1(3-2x)=-12-8x | | p/11+14=14 | | 0.6x+27=0.6x+1.8 | | x+4+2x-9+105=180 | | 0.6x+27=0.6+1.8 | | 2x-6+2x+5+107=180 | | 2x-5+2x+8+119=180 | | 1.5x+32=1.5x | | 6-3/4h=7 | | n+n+2+n+4=57 | | 592=-8(9x-7) | | 12.049=-58.642+y | | 72=11.5+c+22.5 | | -2/9x=4/3x-5/27 | | 150m-75m+47.500=50.500-175m | | 5x+26+9x+2=180 | | -1/2(3x-4)=10x | | 5x+8+4x+11=180 | | x2-6=7 | | b/0.2+1.3=-6.7 | | 7x^2-32x+12=0 | | x-133=125 | | 2x-6=-2(x-5) | | 3^2^x^+^1-28(3^x^-^1)+1=0 | | 243n=244n+255n | | 13x-3=11x+13 | | 28/5x=2 | | 11-4y=6-3y |

Equations solver categories